

Cooling Load Calculation during Summer & Duct Design and Duct Drafting for Commercial Project

S. M Azfar Hashmi^{#1}, Chanduri Rajendra Prasad^{*2}, Syed Faheem^{#3}, Syed Obaid Ur Rahman^{#4},

Syed Mujeeb Ali^{#5}

Mechanical Engineering Department of lords institute of engineering and technology, Jawaharlal Nehru Technological University, Hyderabad, Talengana, India

ABSTRACT

Human comfortness is essential now a day because of the improvement in life style and increasing central air conditioning is more reliable for easy operation with a lower maintenance cost. With large buildings such as commercial complex, auditorium, office buildings are provided with central air conditioning system. Educational and research institutions also need human comfortness, as the population of student community increase year by year. The effective designing of ducting in central air conditioning can provide human comfort, low power consumption, capital cost and improve asthetic of building. This project establishes the results of duct designing for air conditioning using ASHRAE for a commercial building. Duct design items such as duct size, CFM each space pressure drop at each diffuser, elbow, T, taper reducer and duct class, duct material . Using ASHRAE and SMACNA fundamental hand book, maintaining ASHRAE and SMACNA standard.

Keywords : Overall heat transfer coefficient, HAP (Hourly analysis program), Duct designing, Duct drafting

I. INTRODUCTION

Heating, ventilation and air conditioning (HVAC) is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a sub discipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Refrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in *HACR*.

Energy efficiency can be improved more by installing central heating systems which allows more granular application of heat. Zones can be controlled by multiple thermostats. The HVAC industry is a worldwide enterprise, with roles including operation and maintenance, system design and construction, equipment manufacturing and sales, and in education and research. The HVAC industry was historically regulated by the manufacturers of HVAC equipment, but regulating and standards organizations such as HARDI, ASHRAE, SMACNA, ACCA, Uniform Mechanical Code, International Mechanical Code, and *AMCA* have been established to support the industry and encourage high standards and achievement.

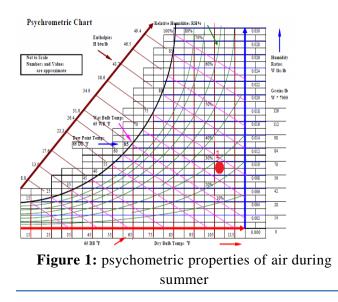
The starting point in carrying out an estimate both for cooling and heating depends on the exterior climate and interior specified conditions. However, before taking up the heat load calculation, it is necessary to find fresh air requirements for each area in detail, as pressurization is a building environment standards. It establishes the general principles of building environment design. It considers the need to provide a healthy indoor environment for the occupants as well as the need to protect the environment for future generations and promote collaboration among the various parties involved in building environmental design for sustainability. ISO16813 is applicable to new construction and the retrofit of existing buildings.

The building environmental design standard aims to:

• Provide the constraints concerning sustainability issues from the initial stage of the design process, with building and plant life cycle to be considered together with owning and operating costs from the beginning of the design process.

• Assess the proposed design with rational criteria for indoor air quality, thermal comfort, acoustical comfort, visual comfort, energy efficiency and HVAC system controls at every stage of the design process.

II. METHODS AND MATERIAL


A. Methodology

- Commercial building plan of 11634.5 square feet
- Calculation of floor, roof, wall and windows areas.
- Calculation of temperature difference (ΔT).
- Thermal resistance of wall, roof and windows.
- H.A.P 4.61.
- Overall heat transfer co efficient.
- Ton of refrigerant.

B. Psychometric condition during summer in Hyderabad

Dry Bulb Temperature- 105°F Relative Humidity-70-80%

As the above conditions for the citizens of Hyderabad is not comfortable. So, the air should be dehumidified and should bring the temperature at $72^{\circ}F-76^{\circ}F$, and relative humidity to 50%-60%. For this cooling is required in a space.

C. Design

For estimating cooling loads, one must consider the unsteady state processes, as the peak cooling load

occurs during the day time and the outside conditions also vary significantly throughout the day due to solar radiation. In addition, all internal sources add on to the cooling loads and neglecting them would lead to underestimation of the required cooling capacity and the possibility of not being able to maintain the required indoor conditions. Thus, cooling load calculations are inherently more complicated as it involves solving unsteady equations with unsteady boundary conditions and internal heat sources.

D. Cooling Load Calculation By Using HAP

(heat load calculation i.e. heat gain through all the sources)

- Application for summer
- Process is directly to cooling and dehumidification (required in wet summer)
- Cooling and humidification (required in dry summer like in desert areas where there is no water available for evaporation).

DEFINITION: The room cooling load is a rate at which the heat must be removed from the room air in order to maintain it at desired temperature and humidity.

E. Civil structure of building

Figure 2: Civil structure of building

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

F. Gathering Data

The second step in the design process is to gather information necessary to model heat transfer processes in the building and to analyze operation of the HVAC equipment which heats and cools the building. This involves gathering data for the building, its environment and its HVAC equipment. Below, gathering of weather data, data for spaces in the building and data for the HVAC system will be discussed.

G. Gathering Weather Data

ASHRAE design weather conditions for Hyderabad will be used for this analysis. In addition to the ASHRAE data, we will use the period Mar through July as the design cooling months. This means cooling sizing calculations will only be performed for this range of months. We could use January through December as the calculation period. However, design weather conditions in Hyderabad are such that peak loads are most likely to occur during the summer or fall months. So we can reduce the set of calculation months to Mar through July to save calculation time without sacrificing reliability.

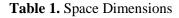
H. Gathering Space Data

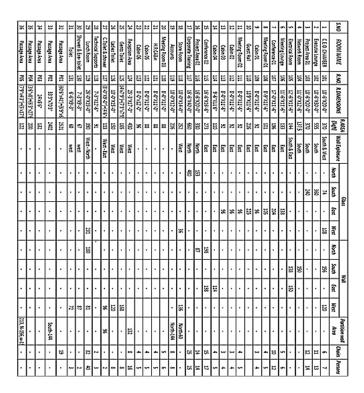
1. Walls

One common wall construction is used for all exterior walls. The construction, consists of 8-inch lightweight concrete block. The exterior surface absorption is in the "dark" category. The overall U-value is 0.37 BTU/(hr-sqft-F). The overall weight is 87.3 lb/sqft.

2. Roofs

One uniform horizontal roof construction is used for this portion of the school building. The roof construction consists of half inch cement plaster,4" Concrete block, half inch cement plaster. The exterior surface absorption is in the "dark" category. The overall U-value is 0.541 BTU/(hr-sqft-F). The overall weight is 43.6 lb/sqft. Note that in HAP the roof assembly must include all material layers from the exterior surface to the interior surface adjacent to the conditioned space.


3. Lighting


Recessed, unvented fluorescent lighting fixtures are used for all rooms in this portion of the school building. A lighting density of 1.00 W/sqft is used. For offices, storage rooms and practice rooms we will use design day lighting levels of 100% from 0700 through 1700, the standard occupancy period for the offices, and 5% from 1800 through 2100 when lighting is reduced or operated intermittently for custodial work. This lighting profile applies for the days the building is in session. For weekends and holidays lighting levels of 0% are used.

4. Occupants

The maximum number of occupants varies by space and will be discussed later in this section. For all rooms "seated at rest" activity level will be used (230) BTU/hr/person sensible, 120 BTU/hr/person latent). For the music room the "office work" activity level will be used due to the higher level of activity in this room (245 BTU/hr/person sensible, 205 BTU/hr/person latent). For all rooms we will use design day occupancy levels of 100% for 0700 through 1700, the normal hours of operation for the building. Occupancy during the period 1800 through 2100 is very infrequent and will be ignored. Thus, occupancy levels of 0% will be used for all other hours of the day. This occupancy profile applies for days the school is in session. For weekends and holidays 0% occupancy is used for all hours.

5. SPACE DIMENSIONS

I. Gathering Air System Data

One air handling system will provide cooling and heating to the rooms in this wing of the commercial Building. Therefore, we will define one HAP air system to represent this equipment.

1. Equipment Type

A VAV rooftop unit will be used.

2. Ventilation

Outdoor ventilation airflow will be calculated using the ASHRAE Standard 62.1-2007 method. "Constant" control for ventilation will be used so the system uses the design flow of outdoor air at all times. Ventilation dampers are closed during the unoccupied period and the damper leak rate is 5%.

3. Cooling Coil

The system provides a constant 55 F supply air temperature to zone terminals. The DX cooling coil is permitted to operate in all months. The bypass factor for the cooling coil is 0.038 which is representative of the type of equipment we expect to select.

4. Preheat Coil

The rooftop unit contains a preheat coil to maintain minimum supply duct temperatures during the winter. The preheat coil is located downstream of the point where return air and outdoor ventilation air mix. The preheat set point is 52 F. The gas-fired heat exchanger in the rooftop unit is used for this purpose. The coil is permitted to operate in all months.

5. Supply Fan

The supply fan in the rooftop unit will be forward curved with variable frequency drive. The total static pressure for the system is estimated to be 3 in wg. The overall fan efficiency is 48%. The coil configuration is draw-thru.

6. Zoning

A zone is a region of the building with one thermostatic control. One zone will be created for each classroom. The music room and its adjacent office, storage room and practice room will all be part of a single zone. Each corridor will also be zone. Therefore, a total of 9 zones will be created: one each for the six classrooms, one for the music room and two for the corridors.

7. Thermostats

Thermostat settings of 75 F occupied cooling, 80 F unoccupied cooling, 70 F occupied heating and 65 F unoccupied heating will be used in all zones. The throttling range will be 1.5 F. The schedule for fan and thermostat operation for the design day will designate 0700 through 2100 as "occupied" hours. This covers both the 0700-1700 operating hours for the school and the 1800-2100 period when custodial staff is present. All other hours will be "unoccupied". This profile applies for the school year which runs from August through June. During the shutdown month of July all hours will be designated as "unoccupied".

8. Supply Terminals

All zones use parallel fan powered mixing box terminals with 0.5 in wg total fan static, 50% overall fan efficiency and a 95 F heating supply temperature. Minimum supply airflow for the terminals is based on ASHRAE Standard 62.1-2007 requirements. We will specify minimum zone airflow as zero so the program will automatically use the Standard 62.1-2007 requirement to set the minimum damper position. The heat source for the reheat coils is electric resistance.

9. Sizing Criteria

Required zone airflow rates will be based on the peak sensible load in each zone. Required space airflow rates will be based on peak space loads for the individual spaces. Safety factors will be specified as zero. A margin of safety will be applied later during equipment selection.

After weather, space and HVAC system data has been gathered, it is entered into HAP. This is the third step in the design process. After entering the data into HAP the report will be generated by HAP it self.

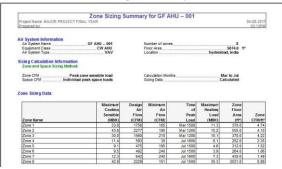
III. RESULTS AND DISCUSSION

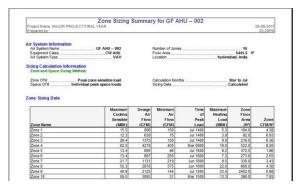
J. Report

Table 2. Air system sizing summery for AHU-001

Project Name: MAJOR PROJECT FINAL YEAR Prepared by	em ai	zing su	ummary for GF AHU 001		04-08-201 03:13PM
Air System Information					
Air System Name GF AHU -	- 001		Number of zones	8	
Equipment Class CW	AHU		Floor Area	5074.0	u.
Air System Type	VAV		Location	nyderabad, India	
Sizing Calculation Information					
Zone and Space Sizing Method:			And a state of the		
Zone CFM Peak zone sensible	e load		Calculation Months	Mar to Jul	
Space CFM Individual peak space i	loads		Sizing Data	Calculated	
Central Cooling Coil Sizing Data					
Total coil load	31.5 T	Cone .	Load occurs at	Jul 1500	
Total coll load	377.9 N	(BH	OA DB / WB	105.0 / 71.7	*F
Sensible coll load	353.8 N	(BH	Entering DB / WB	98.1/68.6	*F
Coil CFM at Jul 1500	7706 C	CF M	Leaving DB / WB	52.8/51.8	*F
Max block CFM at Mar 1400	9311 C	EM	Coil ADP	51.0	*F
Sum of peak zone CFM 1	10023 C	CEM.	Bypass Factor	0.038	
Sensible heat ratio	0.936		Resulting RH	45	36
ftYTon 1	161.1		Design supply temp.	55.0	*F
BTU//hr-ft ²)	74.5		Zone T-stat Check	8 of 8	OK
Water flow@ 10.0 *F rise	75.63 g	mapm	Max zone temperature deviation	0.0	*F
Supply Eap Sizing Data					
Supply Fan Sizing Data Actual max CFM at Mar 1400	9311 0	EM.	Fan motor BHP	7.65	BHP
Standard CEM	8725 0	EM	Fan motor kW	6.07	HW
Actual max CFM/R ^a	1.84 0	FM/ft ^a	Fan static	3.00	in wg
Outdoor Ventilation Air Data					
Design airflow CFM			CF M/person	47.70	CEUlassaa
CFM/ft ^a	1367 0	2P M	Cr m/person		Crm/person

Table 3. Zone sizing summery for AHU-001

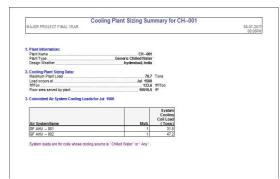


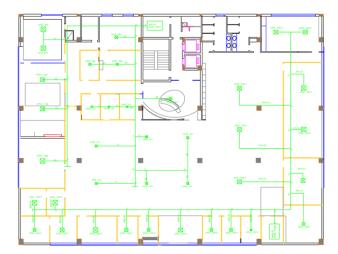

Table 4. Space load and Airflow for AHU-001 Space Loads and Airflows

Zone Name / Space Name	Mult	Cooling Sensible (MBH)	Time of Load	Air Flow (CFM)	Heating Load (MBH)	Floor Area (ft ²)	Space CFM/ft ²
Zone 1							
R-101	1	33.8	Mar 1500	1756	11.3	370.0	4.74
Zone 2				0			
R-102	1	43.8	Mar 1200	2277	15.2	555.0	4.10
Zone 3	3			3			
R-103	1	30.0	Mar 1200	1560	10.1	370.0	4.22
Zone 4				-			
R-118	1	11.4	J ul 1600	593	6.1	252.0	2.35
Zone 5							
R-119	1	5.9	Jul 1500	306	3.2	216.0	1.42
R-123	1	3.3	Jul 1500	169	1.4	96.0	1.77
Zone 6							
R-121	1	3.1	Jul 1500	161	1.3	88.0	1.83
R-122	1	3.1	Jul 1500	161	1.3	88.0	1.83
R-120	1	3.3	Jul 1500	171	1.3	88.0	1.94
Zone 7							
R-124	1	12.3	Jul 1600	642	7.3	430.0	1.49
Zone 8							
R-132	1	42.9	Jul 1500	2229	35.3	2521.0	0.88

Table 5. Air system sizing summery for AHU-002

Air System : Project Name: MAJOR PROJECT FINAL YEAR Prepared by	Sizing Su	Immary for GF AHU 002		04-08-20 03:20P
Air System Information				
Air System Name GF AHU 002		Number of Tones	10	
Equipment Class CW AHU		Number of zones Floor Area	5441.5	412
Air System Type VAV		Location	hyderabad, India	
Sizing Calculation Information				
Zone and Space Sizing Method:				
Zone CFM Peak zone sensible load		Calculation Months	Star to lul	
Space CFM Individual peak space loads		Sizing Data	Calculated	
Central Cooling Coil Sizing Data				
Total coll load 47.2		Load occurs at		
Total coil load 566.9	MBH	OA DB / WB		
Sensible coil load	MBH	Entering D8 / WB		*F
Coil CFM at Jul 1500 14032	CPM	Leaving DB / WB	52.8 / 52.0	14
Max block CFM at Jun 1500 15905	CEM	Coll ADP		*F
Sum of peak zone CFM 17716	CFM	Bypass Factor	0.038	
Sensible heat ratio 0.941 ft9Ton 115.2		Resulting RH	45	76
BTU/(hr-t*) 104.2		Design supply temp. Zone T-stat Check		
Water flow@ 10.0 *F rise 113.43	apm	Max zone temperature deviation	10 01 10	*F
Supply Fan Sizing Data				
Actual max CFM at Jun 1500 15905	CFM	Fan motor BHP		
Standard CFM 14904	CFM	Fan motor kW	10.37	KW
Actual max CFM/ft ⁴ 2.92	CFM/ftª	Fan static	3.00	in wg
Outdoor Ventilation Air Data				
Design airflow CFM 1858	CEM	CFM/person	15.74	C FM/person
CF M/mª 0.34	CFM/#	Gr milperadu	10.14	Ci imperato


Table 6. Zone sizing summery for AHU-002


Table 7. Space load and Airflow for AHU-002 Space Loads and Airflows

Zone Name / Space Name	Mult	Cooling Sensible (MBH)	Time of Load	Air Flow (CFM)	Heating Load (MBH)	Floor Area (ft ²)	Space CFM/ft ²
Zone 1							
R-112	1	12.3	Jul 1400	641	3.9	92.0	6.96
R-113	1	3.2	Jul 1500	168	1.4	92.0	1.83
Zone 2	3						
R-111	1	12.3	Jul 1400	638	3.9	92.0	6.93
Zone 3							
R-110	1	26.4	Jul 1400	1375	9.0	216.0	6.36
Zone 4							
R-109	1	12.1	Jul 1400	628	3.9	92.0	6.83
R-108	1	16.9	Mar 0800	878	3.6	101.0	8.69
R-107	1	32.9	Mar 0800	1710	6.9	196.0	8.72
R-106	1	22.2	Mar 0800	1152	4.7	133.0	8.66
Zone 5							
R-104	1	4.4	Mar 1600	227	3.3	137.5	1.65
R-105	1	6.4	Jul 1600	330	4.5	144.0	2.29
R-128	1	2.8	Jul 1500	144	1.3	91.0	1.58
Zone 6							
R-115	1	13.4	Jul 1600	697	7.3	273.0	2.55
Zone 7							
R-116	1	21.7	Jun 1600	1131	9.5	330.0	3.43
Zone 8	8					8	
R-117	1	55.3	Jun 1600	2878	22.0	660.0	4.36
Zone 9							
R-133	1	40.9	Jul 1500	2125	33.4	2402.0	0.88
Zone 10							
R-129	1	59.5	Mar 1500	3093	13.3	390.0	7.93

Table 8. cooling plant sizing summery for CH-001

K. Duct Designing & Terminal Selection of AHU001

Figure 2. Single line drawing of AHU-001 & AHU-0021. Main duct designing of AHU-001

Application: Commercial

Height of Main Duct: 18" & 16" (as per clearance above false ceiling).

Velocity: 2500 - 4000 FPM ~3000 FPM.

For section A to B

Q = 10017 CFMV = 3000 FPM From the friction chart in ASHRAE Hand Book we get F = 0.445'' Wg/100'

Round duct size 25" Rectangular duct size from equivalent rectangular duct dimension table 40"X 14".

For section B to C

Q = 5585 CFM

V = 2600 FPM

From the friction chart in ASHRAE Hand Book we get F = 0.441'' Wg/100' Total friction for duct B to C $F_p = (F/100) X$ length of duct $F_p = (0.441''/100) X 34' = 0.149'' Wg$ $P_s = 0.9 X \{(3000/4000)^2 - (2600/4000)^2\} = 0.126'' Wg$ P_s is less than F_p so it is not accepted, now chose more less velocity to increase static pressure.

 $\begin{array}{l} Q = 5585 \ CFM \\ V = 2400 \ FPM \\ \\ From the friction chart in ASHRAE Hand Book we get \\ F = 0.359'' \ Wg/100' \\ \\ Total friction for duct B to C \\ \\ F_p = (0.359''/100) \ X \ 34' = 0.122'' \ Wg \\ \\ P_s = 0.9 \ X \ \{(3000/4000)^2 - (2400/4000)^2\} = 0.182'' \ Wg \\ \\ Now \ p_s \ is \ greater \ than \ F_p, \ it \ is \ accepted \ so \ from \ the \\ friction \ chart \ in \ ASHRAE \ Hand \ Book \ we \ get \ the \ duct \\ \\ dia \ 21'' \end{array}$

From equivalent rectangular duct dimension table we get duct size 26"X 14".

Similarly proceeding further in tabular form below.

Table 9. Main duct designing of AHU-001

					(AHU 01) MAI	N DUCT DESIGNING BY	STATIC REGAIN METHOD		
iections	CIM	Velocity (FPM)	Friction (Wg/100')	Length of Duct (Ft)	Friction pressure (Wg)	Static Pressure (Wg)	Equivalent Duct Dis (Inches)	Rect Duct Size (Inches)	Selected or No
AtoB	10017	3000	0.445	6	0.026	NA	24.7	140640	
BtoC	5585	2600	0.441	34	0.149	0.126	19.8	140(24	x
BtoC	5585	2400	0.359	34	0.122	0.182	20.7	140(26	
CtoD	3836	2200	0.362	17.25	0.062	0.05	17.9	143(19	×
CtoD	3836	2000	0.284	17.25	0.048	0.99	18.8	14022	•
D to E	2698	1800	0.27	12.5	0.035	0.042	16.4	140(16	
E to F	1560	1600	0.28	22.5	0.063	0.03	13.4	143(11	×
E to F	1560	1400	0.2	22.5	0.045	0.072	14.3	343(12	
BtoG	4432	2800	0.613	5	0.03	0.09	17	141(18	
GtoH	3839	2600	0.554	11.5	0.063	0.062	16.5	140(19	×
GtoN	3839	2400	0.452	11.5	0.051	0.117	17.1	143(18	
Htol	3364	2200	0.392	14.75	0.057	0.054	16.7	140(19	×
Htol	3364	2000	0.305	34.75	0.045	0.099	16.6	143(18	
i to J	2722	1800	0.268	3.5	0.0093	0.045	16.4	140(18	•
J to K	2229	1600	0.225	13	0.029	0.03	16	14016	
KtoL	1858	1400	0.18	4.5	0.0081	0.03	14.4	14814	•
L to M	1478	1200	0.14	10.75	0.015	0.02	34	140(12	
M to N	371	600	0.058	5.5	0.0031	0.018	8.2	1403	
M to O	1107	1000	0.105	5	0.0053	0.027	14.2	14812	
OtoP	742	800	0.075	17.75	0.0138	0.018	13	14810	
		TOTAL	STATIC PRESSURE			2.477			

2. Terminal Branch Designing

Branch 1 Q = 1749 CFM $H = 14^{"} - 2^{"} = 12^{"}$ (height) $F = 0.06^{"}$ wg/100["] From the friction chart in ASHRAE Hand Book we get V = 900 FPM Duct Dia = 19["] & Duct size = 28["] X 10["].

Similarly proceeding further in tabular form below.

Table 10. Branch duct designing

	1	BRANCH DU	JCT DESIGNING WITH	EQUAL FRICTION N	NETHOD	
S.NO	CFM	HEIGHT	FRICTION (wg/100")	VELOCITY (FPM)	DUCT DIA	DUCT SIZE
1	1749	12"	0.06"	900	19"	26"X 12"
2	1138	10"	0.06"	800	16"	24"X 10"
3	1138	10"	0.06"	800	16"	24"X 10"
4	1560	12"	0.2"	1400	14"	14"X 12"
5	593	10"	0.06"	700	13"	14"X 10"
6	475	10"	0.06"	600	12"	12"X 10"
7	169	6"	0.06"	500	8"	10"X 6"
8	642	10"	0.06"	700	13"	14"X 10"
9	493	10"	0.06"	700	12"	12"X 10"
10	322	10"	0.06"	600	10"	10"X 10"
11	161	6"	0.06"	500	8"	10"X 6"
12	371	10"	0.06"	600	12"	10"X 10"
13	371	10"	0.06"	600	12"	10"X 10"
14	371	10"	0.06"	600	12"	10"X 10"
15	371	10"	0.06"	600	12"	10"X 10"
16	371	10"	0.06"	600	12"	10"X 10"
17	371	10"	0.06"	600	12"	10"X 10"

3. Diffuser Selection

Diffuser 1 Q = 875 CFM V = 450 FPM (velocity should be taken as branch velocity) From the duct sizer we get Neck Size = 12" X 12" Face Size = 15"X 15" (as per manufacturer).

Diffuser 2 Q = 875 CFM V = 450 FPM (velocity should be taken as branch velocity) From the duct sizer we get Neck Size = 12" X 12" Face Size = 15"X 15". Similarly proceeding further in tabular form below.

Table 11. Diffuser Selection	m
------------------------------	---

	DIFF	USER SELECTION BY	DUCT SIZER	
S.NO	CFM	VELOCITY (FPM)	NECK SIZE	FACE SIZE
1	875	450	12"X 12"	15"X 15"
2	875	450	12"X 12"	15"X 15"
3	1138	800	15"X 15"	18"X 18"
4	1138	800	15" X 15"	18"X 18"
5	1560	900	18"X 18"	21"X 21"
6	593	700	12"X 12"	15"X 15"
7	306	600	9"X 9"	12"X 12"
8	169	500	9"X 9"	12"X 12"
9	642	700	12"X 12"	15"X 15"
10	171	650	6"X 6"	9"X 9"
11	161	600	6"X 6"	9"X 9"
12	161	500	6"X 6"	9"X 9"
13	371	600	9"X 9"	12"X 12"
14	371	600	9"X 9"	12"X 12"
15	371	600	9"X 9"	12"X 12"
16	371	600	9"X 9"	12"X 12"
17	371	600	9"X 9"	12"X 12"
18	371	600	9"X 9"	12"X 12"

L. Duct Designing & Terminal Selection of AHU002

1. Main duct designing of AHU-002

Application : Commercial

Height of Main Duct : 18'' & 16'' (as per clearance above false ceiling).

Velocity : 2500 – 4000 FPM ~3000 FPM.

Table 12. Main duct designing of AHU-001

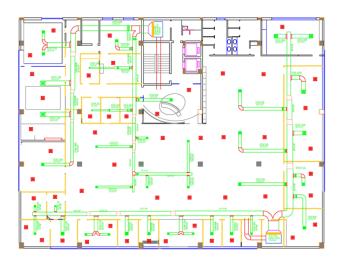
					(AHU 02) MAIP		STATIC REGAIN METHOD		
Sections	CFM	Velocity (FPM)	Friction (Wg/100')	Length of Duct (Ft)	Friction pressure (Wg)	Static Pressure (Wg)	Equivalent Duct Dia (Inches)	Rect Duct Size (Inches)	Selected or No
A to B	17784	3000	0.314	4	0.0125	NA	33	18/54	•
B to C	7961	2800	0.432	8.5	0.035	0.063	23	18X24	•
C to D	7693	2600	0.362	8.5	0.03	0.062	23	18/24	•
D to E	7052	2400	0.312	8.5	0.026	0.056	23	18X24	•
E to F	6414	2200	0.265	13.25	0.035	0.051	23	18/24	•
F to G	5039	2000	0.241	13.75	0.033	0.047	22	18×22	•
GtoH	4411	1800	0.2	9.5	0.019	0.04	21	18×22	•
Htol	3533	1600	0.17	13.25	0.022	0.038	20	18×20	•
Itoj	1823	1400	0.182	14.25	0.025	0.033	16	18×12	•
J to k	671	1200	0.229	3	0.006	0.029	10	1805	•
K to L	557	1000	0.162	8.75	0.014	0.027	10	1805	•
B to M	9923	2800	0.375	3	0.01125	0.063	26	18×32	•
M to N	9226	2600	0.325	6.75	0.021	0.062	25	18×32	•
N to O	8518	2400	0.278	5.75	0.015	0.056	25	18×32	•
O to P	7387	2200	0.243	12.25	0.029	0.051	25	18×30	•
P to Q	6679	2000	0.203	9.75	0.019	0.047	25	18X30	•
Q to R	5240	1800	0.18	9.75	0.017	0.04	23	18×26	•
R to S	4532	1600	0.146	8	0.011	0.038	23	18X24	•
StoT	3093	1400	0.132	24.25	0.032	0.033	20	18X20	•
		TOTAL	TATIC PRESSURE	-		1.394			

2. Terminal Branch Designing

Table 13. Branch duct designing

			JCT DESIGNING WITH			
S.NO	CFM	HEIGHT	FRICTION (wg/100")	VELOCITY (FPM)	DUCT DIA	DUCT SIZE
1	168	6"	0.06"	500	8"	10"X 6"
2	641	10"	0.06"	700	13"	14"X 10"
3	638	10"	0.06"	700	13"	14"X 10"
4	1375	14"	0.06"	900	18"	18"X 14"
5	628	10"	0.06"	700	13"	14"X 10"
6	878	14"	0.06"	800	15"	16"X 14"
7	1710	14"	0.06"	900	19"	20"X 14"
8	1152	14"	0.06"	800	16"	16"X 14"
9	330	8"	0.06"	600	10"	10"X 8"
10	227	8"	0.06"	500	9"	10"X 18"
11	114	6"	0.06"	500	7"	10"X 6"
12	697	10"	0.06"	700	14"	10"X 16"
13	1131	14"	0.06"	800	16"	16"X 14"
14	708	10"	0.06"	700	14"	16"X 10"
15	1439	14"	0.06"	800	18"	20"X 14"
16	708	10"	0.06"	700	14"	16"X 10"
17	1439	14"	0.06"	800	18"	20"X 14"
18	708	10"	0.06"	700	14"	16"X 10"
19	1546	10"	0.06"	900	18"	20"X 10"
20	1546	10"	0.06"	900	18"	20"X 10"

3. Diffuser Selection


Table 14.Diffuser Selection

S.NO	CFM	VELOCITY (FPM)	NECK SIZE	FACE SIZE
1	168	500	9"X 9"	12"X 12"
2	641	700	12"X 12"	15"X 15"
3	638	700	12"X 12"	15" X 15"
4	1375	900	18"X 18"	21"X 21"
5	628	700	12"X 12"	15" X 15"
6	878	800	15" X 15"	18"X 18"
7	1710	900	18"X 18"	21"X 21"
8	1152	800	15" X 15"	18"X 18"
9	330	600	9"X 9"	12"X 12"
10	227	500	9"X 9"	12"X 12"
11	114	500	6"X 6"	9"X 9"
12	697	700	12"X 12"	15" X 15"
13	1131	800	15" X 15"	18"X 18"
14	708	700	12"X 12"	15" X 15"
15	1439	800	18"X 18"	21"X 21"
16	708	700	12"X 12"	15" X 15"
17	1439	800	18"X 18"	21"X 21"
18	708	700	12"X 12"	15" X 15"
19	1546	800	18"X 18"	21"X 21"
20	1546	800	18"X 18"	21"X 21"

Table 15. total cooling load of the building

MAJOR PROJECT FINAL YEAR	Cooling Plant Sizing Su	04-07-2 08.00	
1. Plant Information: Plant Name Plant Type	CH-001	1	
Plant Type Design Weather	Generic Chilled Water hyderabad, India	ar a	
2. Cooling Plant Sizing Data:			
Maximum Plant Load	78.7	7 Tons	
Load occurs at	Jul 1500	0	
ft9Ton	133.6	6 ft ^a /Ton	
Floor area served by plant	10515.5	5 ft ⁴	
3. Coincident Air System Cooling Load	sfor Jul 1500		
		System	
		Coll Load	
Air System Name	Mult	(Tons)	
GF AHU - 001	1	31.5	
GF AHU - 002	1	47.2	
System loads are for coils whose coolin	g source is ' Chilled Water ' or ' Any ' .		

Figure 3. Double line drawing of AHU-001 & AHU-002

IV. CONCLUSION

This project briefly explains how to perform cooling load calculation in H.A.P 4.61 for humidifying the air and bring the psychometric properties at a comfort zone for human body in summer season.

V. REFERENCES

- Milne, M, et al., "Climate Consultant 40 Develops Design Guidelines for Each Unique Climate, "proceedings of the American Solar Society. Buffalo New York, 2009.
- [2]. Givoni, b., Man Climate and Architecture, Van Nostrand Reinhold, 1981.
- [3]. Givoni, B., Climate Considerations in building and Urban Design. John Wiley and Sons, New York, 1998.
- [4]. Driscoll, M. P., Psychology of learning for Instruction. Pearson Education, Florida State University, 2005.
- [5]. "Fundamentals of HVACR " by Carter Stanfield, David Skaves 2009.
- [6]. "HVAC Simplified" by Stephan P. Kavanaugh 2006.
- [7]. DeWalt's HVAC/R Professional Reference by Paul Rosenburg 2006.
- [8]. HVAC Troubleshooting Guide –Rex Miller 2009.